Monday, May 13, 2013

Who's Driving the MEMS Evolution Revolution Now? (Part 3 of 3)


Who’s Driving the MEMS Evolution Revolution Now? (Part 3 of 3)

It is my pleasure to present the conclusion of the guest blog trilogy on the MEMS Evolution Revolution, written by my colleague, and long-time MEMS industry insider, Howard Wisniowski.  So far in this series, Howard has taken us with him to "visit" member companies Qualtré and WiSpry, taught us about bulk acoustic wave (BAW) solid state MEMS gyroscopes, radio frequency (RF) MEMS, and an innovative application called "Tunable Antennae."  In part three, we will be introduced to one of the many new MEMS-based technologies coming to the forefront, MEMS timing devices.  We will also take a look at Sand 9, another start up and MIG member that has developed a truly disruptive timing device.

I hope you are as excited as I was to read this the final installment to the series, and I welcome you share your stories of other MEMS start ups that are breaking out in their own markets.  Whether it be in agriculture or acoustics, healthcare or helicopters,  MEMS truly are everywhere and it’s likely the innovative smaller companies who will spread it further, faster and for longer.  Viva la Revolution!


Who’s Driving the MEMS Evolution Revolution Now?
Part 3
Howard Wisniowski, Freelance Editor

Although MEMS inertial sensors received most of the attention during the first and second waves of MEMS technology adoption in the 1990s and 2000s, many new MEMS-based technologies are going to be taking center stage during the current decade. Micro-electromechanical system (MEMS) timing devices are one good example.

MEMS Oscillators


MEMS-based oscillators are an emerging class of highly miniaturized, batch manufacturable timing devices that are more rugged, use less power and are more immune to electromagnetic interference than the well-established quartz-based oscillators. They also play an important role by enabling synchronicity and stable operation in complex electronic devices, from smartphones and tablets to industrial test and measurement systems and communications infrastructure equipment — for applications such as ethernet timing, network timing and cellular base stations. Users not only benefit from better performance in smaller geometries, these MEMS timing products can be integrated / co-packaged with standard semiconductor IC’s to enhance performance, simplify end system design, and optimize board real estate.

Sand 9 (Cambridge, MA), another startup and MIG member, has developed a MEMS timing-device platform that is truly disruptive. The company’s technology is the industry’s first to achieve the stringent phase noise and short-term stability performance requirements for wireless and wired applications where mobile devices are susceptible to malfunctions when a device is dropped and the quartz is dislodged. The spurious-free resonator design – which can enhance network efficiency due to reduced packet loss – can also result in fewer dropped calls. Mobile devices also can easily lose GPS lock and may drop calls due to the limitations of quartz. Also being addressed are earlier MEMS challenges including high power consumption, large phase noise, strong jitter, frequency jumps and strong spurious output. While previous solutions were OK for low-end timing solutions, they are less acceptable for precision timing requirements of 3G, 4G or GPS applications. Sand 9’s spurious-free resonator design can enhance network efficiency due to reduced packet loss – resulting in fewer dropped calls. Combined with high immunity to noise, shock and lead-free reflow temperatures, the Sand 9 high-precision platform also addresses temperature compensated crystal oscillator (TCXO) weaknesses that system designers have been forced to work around for decades.

From a process innovation standpoint, Sand 9 is developing piezoelectric MEMS products which are roughly 100x more efficient at converting electrical energy to mechanical and back to electrical energy again than electrostatic. This means better performance in smaller geometries while improving quality (no moving plates = no stiction). These developments are aimed at overcoming disadvantages of quartz-based devices that include manufacturing cost, longer procurement times, scalability and susceptibility to shock damage.

Industry watchers and analysts have taken notice. According to Semico Research, the MEMS oscillator market is still at a nascent stage, representing less than one percent of the total timing market of $6.3 billion.  By offering drop-in replacement – and technical benefits over established silicon quartz crystal timing devices – MEMS companies have already begun to capture market share from the legacy suppliers: quartz crystal manufacturers. According to their estimates, the global market for MEMS oscillators was $21.4 million in 2010 and is expected to reach $312 million by 2014, with consumer products representing nearly half of the market. With disruptive MEMS technologies like MEMS oscillators getting traction, the third wave of MEMS adoption is off and running.  

No comments:

Post a Comment